CIB. W78
22nd Conference on
Information Technology in
Construction

Edited by:
Raimar J. Scherer
Peter Katranuschkov
Sven-Eric Schapke

July 19 - 21, 2005
The Westin Bellevue, Dresden, Germany
Institute for Construction Informatics, Technische Universität Dresden, Germany
Editorial

Reimar J. Scherer, Peter Katranuschkov & Sven-Eric Schapke
Published by: Institute for Construction Informatics, Technische Universität Dresden, Germany
ISBN: 3-86005-478-3, CIB Publication No.: 304
Print: addprint AG, Am Spitzberg 8a, 01728 Bannewitz / Possendorf
Brief Contents

PART I: KEYNOTE SESSION

Construction Informatics Today

PART II: SPECIAL SESSIONS

Capturing the Logic of Processes in Civil Engineering
Managing the Multiple Model Space

PART III: REGULAR SESSIONS

Process Modelling Methods and Techniques
Process Management Methodologies
Supporting Collaborative Work
Conceptual Modelling
Modelling for Interoperability
nD Modelling
Product Data Management
Semantic Interoperability
Information and Knowledge Management
Advanced Design Methods
Advanced Simulation Methods
Reliability, Security and Risk
Distributed Agent-Enabled and Mobile Systems
Construction Project Management
Intelligent Buildings
Facilities, Infrastructure and Assets Management
Studies, Analyses and Lessons from Practice
Table of Contents

Preface xvii
Word of Gratitude xiv
Conference Organisation xv

PART I: KEYNOTE SESSION

Construction Informatics Today

- Infrastructure Lifecycle Management (ILM): An Emerging Platform-Centred Approach for Software Service Integration
 U. Forgber
 3
- The Job Profile of Construction Informatics
 R. Steinmann
 7
- Towards Semantic Grid in Construction Informatics
 A. B. Cremers, S. Alda & U. Radetzki
 11

PART II: SPECIAL SESSIONS

Capturing the Logic of Processes in Civil Engineering

- Logic of Processes in Civil Engineering
 W. Huhnt, P. Racky & S.M. Holzer
 15
- Generating Sequences of Construction Tasks
 W. Huhnt
 17
- Linking up versus Breaking down: Demands on Cost Estimating for Turn-key Construction Projects
 P. Racky
 23
- Resources, Time & Money: Why Project Schedules Simply Don't Work
 S. M. Holzer & P. Geyer
 29

Managing the Multiple Model Space

- Integration of Multiple Product Models
 A. Kiviniemi & J. Haymaker
 35
- Integration of Multiple Product Models: IFC Model Servers as a Potential Solution
 A. Kiviniemi, M. Fischer & V. Bagjanac
 37
- Formalizing and Managing the Dependencies between Models
 J. Haymaker
 41

PART III: REGULAR SESSIONS

Process Modelling Methods and Techniques
Processes Modelling in Civil Engineering Based on Hierarchical Petri Nets
Supported Geotechnical Design with Petri-Net-Based Process Patterns
R. Katsenbach & J. Giere
Application of Coloured Petri-Nets for the Business Process Modelling in Construction Companies
A. Kneissel & R. Schach
WEB-Services as a Technology to Support Construction Processes
N. Riediger, K. Laube, W. Huhnt & B. Kochendörfer

Process Management Methodologies
A Methodology to Plan, Communicate and Control Multidisciplinary Design Processes
J. Haymaker, C. Kam & M. Fischer
Enabling Dynamic Networks Using an Architecture for Collaborative Scenarios
T. Theling, J. Zwickler, P. Loos, O. Adam & A. Hofer
Use of Business Process Modules for Construction Project Management
M. Keller & R.J. Scherer
Active Process Model Supported Collaboration
T. Cerovek & P. Katranuschkov

Supporting Collaborative Work
Versioning Structured Object Sets Using Text based Version Control Systems
B. Firmenich, C. Koch, T. Richter & D. G. Beer
Characterizing the Visualization Techniques of Project-related Interactions
B. Olijacques & F. Felts
Digital Assistant for the Cooperative Construction Process in AEC
S. Kubicki, J.C. Bignon & G. Halin
Why Interactive Multi-disciplinary Collaboration in Building Design is Better than Document based Design
K.K. Yum
Socio-technical Management of Collaborative Mobile Computing in Construction
A. Lögren
Using Voice over IP and a Wireless Network to Aid Collaboration in the Construction Industry
S. Akhan, A. El-Hamalawi, N. Bouchlaghem & S. Ahmad
Provisions for Proficient Construction Project Extranet Protocols to Facilitate Collaborative Extranet Working
S.G. Yeomans, N.M. Bouchlaghem & A. El-Hamalawi
Agent-facilitated Trust Building in the SEEM Infrastructure
Z. Ren, T.M. Hassan, C.D. Carter & C. J. Anumba
Conceptual Modelling

Virtual Buildings from Theory to Practice
P. Christiansson & M. Carlsten
171

Rethinking Conceptual Structures and their Expression – Part 1: An Essay about Concept Formation and Symbology
W. Giebingh
177

Provenance Metadata for Shared Product Model Databases
E. Petrini & V. Stanovský & Ž. Turk
185

An Ontology Web Language Notation of the Industry Foundation Classes
J. Beets, J. P. van Leeuwen & B. de Vries
193

Modelling for Interoperability

Question-Answer System for Object-oriented Analysis and Design
P. I. Sosnin & E. P. Sosnina
199

Classification and Coding of Entities of Construction Data Domain
A.S. Pavlov & D.S. Kulichkov
205

eProCon: Electronic Product Information in Construction
G. Gudnason, J. Hyvärinen, C. Finne & S. Larsson
211

Prototype of Semantic Interoperability between Different Modalities of 2D-CAD Design
C.A. Jacoski
219

nD Modelling

Experiences with 3D and 4D CAD on Building Construction Projects: Benefits for Project Success and Controllable Implementation Factors
J. Guo, M. Fischer, T. Tollefsen & T. Haugen
225

Automatic Comparison of Site Images and the 4D Model of the Building
P. Podbreznik & D. Reboli
235

4D Project Planning and H&S Management
A. Ciribini & G. Galliberti
241

Using 4D in a New “2D + time” Conceptualization
L. Rischmoller & E. Valle
247

Product Data Management

Manipulating IFC Model Data in Conjunction with CAD
M. Nour & K. Beucke
253

Efficient Verification of Product Model Data: An Approach and an Analysis
V.A. Semenov, A.A. Bazhan, S.V. Morozov & O.A. Tarlapan
261

Supporting State-based Transactions in Collaborative Product Modelling Environments
M. Weise & P. Katranuschkov
269

Multi-model Environment: Links between Objects in Different Building Models
A. Kiviniemi, M. Fischer & V. Basjánac
277
Semantic Interoperability
Shifting the Construction Interoperability Paradigm, in the Advent of Service Oriented and Model Driven Architectures A. Grito, R. Jardim-Gonçalves & A. Steiger-Garcao
Towards Semantic Interoperability in Virtual Organisations A. Gehre, P. Karanachkov, V. Stankovski & R.J. Scherer

Information and Knowledge Management
Automated Classification of A/E/C Web Content R. Amor & K. Xu
Context Aware Information Delivery for On-Site Construction Operations Z. Aziz, C.J. Anumba, D. Ruikar, P.M. Carrillo & N.M. Bouchlaghem
Multilevel Information Management in Geotechnical Engineering F. Schley & K.-F. Holz
Constructing Building Information Networks from Proprietary Documents and Product Model Data R.J. Scherer & S.-E. Schapke
IS Tools for Knowledge Management in Public Construction Projects N. Marja & J. Päivi
Using Experience Based Cases to Support Construction Business Processes F.L. Ribeiro

Advanced Design Methods
Early Building Design: Capturing Decisions for Better Interoperability K. Meriru, C. Bédard & H. Rivard
A Multi-floor Topology to Geometry Transformation Procedure Based on Shape Functions G. Zimmermann & G. Suter
Neural Networks in the Re-engineering Process Based on Construction Drawings S. Komorowski & V. Berkhahn

viii
Advanced Simulation Methods
Prediction of Consequences for Planning Situation Based Decisions
A. Lühr & K.-U. Bleizinger 409
Conceptual Real-time Multiphase Flow Modeling for Complex NAPL Remediation Systems
I. David & S.B. Anim-Addo 417
Implementation of Logic for Earthmoving Processes with a Game Development Engine
H.-J. Bargstädt & A. Blickling 425
Kochonen Neural Model for Destructive Seismic Waves
S. Radeva & D. Radev 431
Integrating Evacuation Planning into an Octree-based CSCW Framework for Structural Engineering
R.-P. Mundani, H.-J. Bungartz & S. Giesecke 435

Reliability, Security and Risk
Probabilistic Building Inspection and Life Assessment – a Computer Program for Reliability Based System Assessment
C. Klinzmann & D. Hosser 441
Application of Reliability-based System Assessment Using a Bridge Example
R. Schnitger & D. Hosser 447
Risk Assessment in Disaster Recovery Strategies Development
A. Galach & Z. Kotulski 455
On Scalable Security Model for Sensor Networks Protocols
B. Księcikowski & Z. Kotulski 463

Distributed Agent-Enabled and Mobile Systems
Agent-enabled Model Integration in a Knowledge-based Planning Environment
U. Rüppel, M. Theiß & M. Lange 471
Integrated Multiagent and Peer-to-Peer Based Workflow-Control of Dynamic Networked Co-operations in Structural Design
S. Alda, A.B. Cremers, J. Bilek & D. Hartmann 477
Human Oriented Mobile System for On-site Problem Solving
A. Majdic & D. Reboř 485
Implantation Strategy of Mobile Technologies in Construction
K. Eisenblättner & K. Menzel 489

Construction Project Management
Web-based Integrated Construction Management Solution
K.U. Gökçe, R.J. Scherer & H.A. Dikbas 497
Learning Construction Decision Making with Arbitrator – Competing and Evolving in Dynamic Role Interplay
K.-T. Kao, T.-W. Chang & J.-C. Lai 505
Construction Project Supply Chains and their Use of ICT
G. J. Brewer, T. Gigiendran & S.E. Chen 513
An Integrated System for Conceptual Cost Estimates
S. Alkass & A. Jrade 521
Facilitating the Link between Point-of-production Workers and Corporate ICT Systems in Construction
A. Thorpe, M.J. Ward, S. Bowden & A.D.F. Price
Project Teams and ICT: Surfacing the Critical Success Factors
T. Gajendran, G. J. Brewer, S. E. Chen
The Use of ICT in the Construction Industry: Critical Success Factors and Strategic Relationships in Temporary Project Organisations
G.J. Brewer, T. Gajendran & S. E. Chen

Intelligent Buildings
Professional and Educational Implications of Innovations in Building and Construction
V. Hartkopf, V. Losness, A. Aaz & Y. Hua
A Vision-based Sensing System for Sentient Building Models
O. Icozgu & A. Mahdavi
The Software Design of a Dynamic Building Model Service
K. A. Brunner & A. Mahdavi
Merging Building Automation Network Design and IFC 2x Construction Projects
A. Karavan, M. Neugebauer & K. Kabitzsch

Facilities, Infrastructure and Assets Management
Where Does CAFM Really Help? Current Fields of Application and Future Trends according to System Users
J. Abel & K. Lennerts
Enabling Relationship Management: Agent Technology for Facility Management Integration
K. Ercofskyn & A. Dikhas
Knowledge-Based Services in Building Management
R. Schach & J. Otto
Knowledge-Based Services in Building Management: Online Advisory Expert System
A. Demenijev & K. Kabitzsch
Facility Management (FM) Information Systems, Key Tasks and Implementation Tools
G.G. Malycha & V. N. Kolchin
RFID Applied to the Built Environment: Buried Asset Tagging and Tracking System
K. Dziadak, J. Sommerville, B. Kumar & J. Green
Municipal Infrastructure Asset Management Systems: State-of-the-Art Review
M. Halfavy, L. Newton & D. Vanier
GIS-based DSS for Sustainable Infrastructures and Management of Tourism in the Leningrad Region
M. Yu. Kononova & O.G. Nikonova

Studies, Analyses and Lessons from Practice
Process Complexity and Cultural Baggage – Barriers to Change
A. D. Dawson & N. Pham
State of the Construction Information Technology Development Industry in Canada
T.M. Froese & Z. Han
Lean Construction and IT Principles, Tools and Applications in a South American Precast Concrete Industry
S. Scheer, A. Santos, J.R.S. Quevedo & J. Mikaldo
Awareness and Adeptation of Information and Communication Technology (ICT) by Architectural, Engineering and Construction (AEC) Industry Educators in Nigeria O.S. Oyediran

A Three Level Approach for Exploring the ICT Impact on the Building Design Process Applied to a Real-life Project A. Moum

Model Based Cost and Energy Performance Estimation during Schematic Design V. Bazjanac

The Use of Virtual Reality in a Large Scale Industry Project T. Olofsson, R. P. M. Jongeling & S. Woksepp

An Exploration of Design Systems for Mass Customization of Factory-built Timber Frame Homes M. Lapointe, R. Beauregard & S. D'Amours

Economic Expediency of Building Waste Recycling T.D. Dakovsky & R.A. Zaharieva

An Application of Artificial Intelligence Planner for bespoke Precast Concrete Production Planning: A Case Study Y. Benjaoran & N. Dawood

International Council for Research and Innovation in Building and Construction Author Index
Preface

Construction Informatics Today

Construction informatics is still a young discipline with less than 30 years of age, but it has already undergone several changes since its establishment in the 70s. Today it features three main disciplines that can be characterised as computational mechanics engineering, computational design engineering and computational organisational engineering. The roots of construction informatics lie in computational mechanics. Extended by computer-aided drafting in the 80s, this is still believed to be a synonym for construction informatics by the majority of end users in civil engineering. However, while computational mechanics engineering is striding more and more away because of its strong inter-relationship with numerical mathematics, the other two disciplines are evolving in close inter-relationship, both dealing with information and knowledge management.

In these days we know that information and knowledge management require enormous computational power and sophisticated methods of reasoning. They are touching the boundary of human intelligence and are still far away from achieving real complex and autonomous reasonable behaviour. These are demands that are not yet sufficiently satisfied. Currently, Semantic Web and Grid are technologies that are expected to provide a considerable push forward, while in basic informatics computational reasoning algorithms are developed and methods for related application domains are explored, e.g. for computational conceptual design, automated consistency checking, long-term transactions in information and knowledge retrieval, managing of multiple model spaces, nD models etc.

As the discipline construction informatics has been changing throughout the years, job profiles have been changing, too. Development of own programmes from scratch was the most widely spread job at the beginning, and large companies established their own software divisions, which were outsourced in later years to be finally sold out. Remaining parts of software divisions survived as small units or were even established anew with completely new objectives: end-user support, system administration, as well as system and tool specification and maintenance on “project demand” basis. Even renown software companies go this way forced by the globalisation. To date, programming services are available everywhere and can be acquired from nearly everywhere with only marginal and therefore cost-efficient additional effort, whereas conceptual and strategic developments are becoming more and more sophisticated, very personal and economic-sensitive tasks which cannot be distributed throughout the world and cannot be so easily integrated only by means of collaboration support tools. Conceptual and strategic developments require eye-to-eye discussions and explanations. They are headquarter tasks, and moreover, they strongly depend on the culture. It is especially in this kind of tasks where academic efforts are most valuable, helping to bridge cultural boundaries and to push knowledge frontiers. The last new type of tasks is customization. It does not only need eye-to-eye contact with the client but also a deep understanding of the local culture, much more than the strategic tasks mentioned above.

Many of today’s aspects of construction informatics are visible in these proceedings. Coming from virtually every corner of the world, the papers submitted to the conference cover a broad spectrum of topics to provide a true panoramic picture. Contributions address process modelling and management, conceptual data modelling, semantic interoperability, advanced information and knowledge management methods as well as advanced design and simulation methods, reliability, security, risk and construction management issues, distributed systems, facilities, infrastructure and assets management and, last but not least, studies, analyses and lessons from practice. With that, the long tradition of the CIB-W78 conferences as promoters of innovative construction informatics themes is kept upright and continued.

Raimar J. Scherer
Dresden, July 2005
Word of Gratitude

Numerous persons engaged time and efforts to make these proceedings and the conference possible. First and foremost the authors of the papers and the participants at the conference. Reviewers worked very hard to ensure time schedules. Numerous members of the scientific committee promoted the conference in various ways. Last but not least, the team at the Institute for Construction Informatics at the Technical University of Dresden provided dedicated help and support. Our warm gratitude goes to each and all of them.

The Editors
Conference Organisation

ORGANISING COMMITTEE
Raimar J. Scherer, Technische Universität Dresden, Germany
Rainer Schach, Technische Universität Dresden, Germany
Peter Katranuschkov, Technische Universität Dresden, Germany
Sven-Eric Schapke, Technische Universität Dresden, Germany

SCIENTIFIC COMMITTEE
Robert Amor, University of Auckland, New Zealand
Chinmay Anumba, Loughborough University of Technology, UK
Godfried Augenbroe, Georgia Institute of Technology, USA
Claude Bedard, Ecole de Technologie Superieure, Canada
Martin Betts, Queensland University of Technology, Brisbane, Australia
Bo-Christer Björk, Swedish School of Economics & Business Administration, Finland
Michel Böhm, TNO, The Netherlands
Per Christiansson, Aalborg University, Denmark
Gustav Coetzee, CSIR, South Africa
Nashwan Dawood, University of Teeside, UK
Attila Dikbas, ITU, Turkey
Robin Drogemuller, CSIRO, Australia
Charles Eastman, Georgia Institute of Technology, USA
Anders Ekholm, Lund Institute of Technology, Sweden
Martin Fischer, Stanford University, USA
Thomas Froese, University of British Columbia, Canada
Keith Futerer, Eastpoint Property Management Service, UK
James Garrett, Carnegie Mellon University, USA
Ricardo Goncalves, Universidade Nova de Lisboa, Portugal
Gudni Gudnason, Icelandic Building Research Institute, Iceland
Matti Hannus, VTT, Finland
Rob Howard, Technical University of Denmark, Denmark
Mary Lou Maher, University of Sydney, Australia
Manuel Martinez, ADICO, Spain
Udo Meißner, TU Darmstadt, Germany
Svetla Radeva, Univ. of Architecture, Civil Engineering & Geodesy, Sofia, Bulgaria
Danijel Rebolj, University of Maribor, Slovenia
Kent Reed, NIST, USA
Yacine Rezgui, Informatics Research Institute, University of Salford, UK
Ian Smith, EPFL, Lausanne, Switzerland
Rasso Steinmann, Nemetschek AG & Steinmann Consulting, Munich, Germany
Tony Thorpe, Loughborough University, UK
Frits Tolman, Delft University of Technology, The Netherlands
Tamer El-Diraby, University of Toronto, Canada
Ziga Turk, University of Ljubljana, Slovenia
Dana Vanier, National Research Council of Canada, Ottawa, Canada
Alain Zarli, CSTB, France